TABLE III. Shock wave data for carbon tetrachloride.

	Initial density (g/cc)	Shock velocity (km/sec)	Particle velocity (km/sec)	Pressure (kbar)	Relative volume (V/V_0)	Dural shock velocity (km/sec)	
	1.590	2.32±0.01	0.72±0.08	27±3	0.688±0.035	5.93±0.07	911
	1.577	2.27 ± 0.01	0.84 ± 0.04	30±2	0.631 ± 0.018	6.02 ± 0.03	
	1.571	2.47 ± 0.01	0.83 ± 0.04	32±2	0.663 ± 0.018	6.02 ± 0.04	
	1.571	2.79 ± 0.01	0.97 ± 0.03	43±1	0.652 ± 0.010	6.16 ± 0.02	
	1.586	2.91 ± 0.01	1.03 ± 0.03	48±1	0.645 ± 0.010	6.22 ± 0.03	
	1.594	2.95 ± 0.01	1.04 ± 0.04	49±2	0.648 ± 0.012	6.23 ± 0.03	
	1.596	3.28 ± 0.01	1.25 ± 0.03	65±1	0.619 ± 0.008	6.43 ± 0.02	
	1.571	3.32 ± 0.01	1.33 ± 0.02	70 ± 1	0.598 ± 0.006	6.50 ± 0.02	
	1.606	3.46 ± 0.01	1.33 ± 0.02	74 ± 1	0.615 ± 0.007	6.52 ± 0.02	
	1.591	3.44 ± 0.01	1.36 ± 0.02	74±1	0.606 ± 0.007	6.54 ± 0.02	
	1.598	3.50 ± 0.01	1.45 ± 0.08	81±5	0.585 ± 0.023	6.62 ± 0.07	
	1.577	3.74 ± 0.01	1.61 ± 0.02	95 ± 1	0.568 ± 0.006	6.78 ± 0.02	
	1.571	3.86 ± 0.01	1.69 ± 0.01	102±1	0.563 ± 0.003	6.86 ± 0.01	
	1.606	4.08 ± 0.01	1.73 ± 0.04	113±3	0.576 ± 0.011	6.92 ± 0.04	
	1.580	4.07 ± 0.01	1.77 ± 0.02	114±1	0.566 ± 0.005	6.95 ± 0.02	
	1.571	4.27 ± 0.03	1.97 ± 0.09	132±6	0.539 ± 0.021	7.14 ± 0.08	
	1.571	4.52 ± 0.01	2.07 ± 0.02	148±1	0.542 ± 0.003	7.26 ± 0.01	
	1.586	4.66 ± 0.01	2.10 ± 0.02	156±1	0.549 ± 0.004	7.31 ± 0.02	
	1.596	4.71 ± 0.01	2.15 ± 0.04	161±3	0.544 ± 0.008	7.35 ± 0.03	
*	1.574	4.88 ± 0.01	2.36 ± 0.03	182±2	0.516 ± 0.006	7.56 ± 0.03	
	1.610	5.34 ± 0.02	2.55 ± 0.03	220 ± 2	0.522 ± 0.005	7.80 ± 0.03	
	1.580	5.21 ± 0.01	2.62 ± 0.02	216 ± 2	0.497 ± 0.004	7.83 ± 0.02	
	1.588	5.72 ± 0.03	2.95 ± 0.07	268 ± 7	0.484 ± 0.013	8.20 ± 0.06	
	1.571	5.69 ± 0.02	3.06 ± 0.05	274 ± 5	0.461 ± 0.009	8.29 ± 0.05	
	1.571	6.13 ± 0.03	3.22 ± 0.03	311 ± 3	0.476 ± 0.005	8.48 ± 0.03	
	1.584	6.44 ± 0.05	3.44 ± 0.08	352±9	0.465 ± 0.014	8.74 ± 0.08	
	1.598	6.80 ± 0.02	3.64 ± 0.04	395 ± 4	0.466 ± 0.006	8.97 ± 0.04	
	1.582	6.72 ± 0.02	3.69 ± 0.07	392±7	0.451 ± 0.010	9.00 ± 0.06	
	1.580	6.78 ± 0.03	3.77 ± 0.08	404 ± 9	0.444 ± 0.013	9.08 ± 0.08	
	1.586	7.13 ± 0.03	4.05 ± 0.06	458 ± 7	0.432 ± 0.008	9.39 ± 0.05	
	1.588	7.55 ± 0.02	4.40 ± 0.06	527±7	0.417 ± 0.008	9.77 ± 0.06	
	1.588	7.96 ± 0.03	4.58 ± 0.06	579 ± 8	0.425 ± 0.009	10.00 ± 0.06	
	1.598	8.06±0.06	4.74 ± 0.13	611 ± 17	0.411 ± 0.017	10.17 ± 0.12	
2	1.580	8.24±0.04	4.74±0.11	617 ± 14	0.425 ± 0.014	10.18 ± 0.10	
	1.584	8.26 ± 0.03	4.84±0.10	633±13	0.415 ± 0.012	10.28 ± 0.09	

velocity and the excellent agreement between the measured sound speed¹⁹ and the intercept of the lower line with the U_s axis. The line segments were determined by a least-squares fit of the U_s-U_p data; in the region $2.40 \le U_s \le 3.50$ km/sec the relationship is

$$U_s = 1.18 \pm 0.22 + (1.67 \pm 0.14) U_p,$$
 (9)

and from $3.50 \le U_{\bullet} \le 8.20 \text{ km/sec}$,

$$U_s = 1.11 \pm 0.07 + (1.35 \pm 0.02) U_p.$$
 (10)

In the particle velocity interval of 1.39 to 1.84 km/sec, the shock velocity is essentially constant. The data of Walsh and Rice⁸ agree with the present data but those of Cook and Rogers⁹ do not. The abrupt change in the slope and the offset of the two line segments indicates a transition occurring at about 62 kbar (U_s =3.50 km/sec, U_p =1.40 km/sec, and ρ_0 =1.263 g/cc) with a new phase formed at about 80 kbar

 $(U_s=3.50 \text{ km/sec}, U_p=1.80 \text{ km/sec}, \rho_0=1.263 \text{ g/cc})$. The intercept of the lower line segment with the U_s axis (1.18 km/sec) is very close to the measured sound speed of 1.16 km/sec, indicating that carbon disulfide is in the liquid state from 1 bar-62 kbar.

The $P-V/V_0$ plot of Fig. 7 is characterized by concave upward curves above 80 kbar and below 62 kbar with a well-defined cusp representing the transition at 62 kbar. A straight line segment joins the two major curves. Using the lower curve as a reference, the decrease in relative volume ascribed to the transition is nearly 17%. Every point on the $P-V/V_0$ curves can be reached by the Rayleigh line in a single shock originating from the P_0 , V_0 point. As a result there is no double shock wave structure associated with the transition even though an interval of constant shock velocity was observed in the $U_{\bullet}-U_{p}$ plot. This was confirmed by experiment (see Sec. II). The