TABLE III. Shock wave data for carbon tetrachloride. | | Initial density (g/cc) | Shock
velocity
(km/sec) | Particle
velocity
(km/sec) | Pressure
(kbar) | Relative volume (V/V_0) | Dural shock
velocity
(km/sec) | | |---|------------------------|-------------------------------|----------------------------------|--------------------|---------------------------|-------------------------------------|-----| | | 1.590 | 2.32±0.01 | 0.72±0.08 | 27±3 | 0.688±0.035 | 5.93±0.07 | 911 | | | 1.577 | 2.27 ± 0.01 | 0.84 ± 0.04 | 30±2 | 0.631 ± 0.018 | 6.02 ± 0.03 | | | | 1.571 | 2.47 ± 0.01 | 0.83 ± 0.04 | 32±2 | 0.663 ± 0.018 | 6.02 ± 0.04 | | | | 1.571 | 2.79 ± 0.01 | 0.97 ± 0.03 | 43±1 | 0.652 ± 0.010 | 6.16 ± 0.02 | | | | 1.586 | 2.91 ± 0.01 | 1.03 ± 0.03 | 48±1 | 0.645 ± 0.010 | 6.22 ± 0.03 | | | | 1.594 | 2.95 ± 0.01 | 1.04 ± 0.04 | 49±2 | 0.648 ± 0.012 | 6.23 ± 0.03 | | | | 1.596 | 3.28 ± 0.01 | 1.25 ± 0.03 | 65±1 | 0.619 ± 0.008 | 6.43 ± 0.02 | | | | 1.571 | 3.32 ± 0.01 | 1.33 ± 0.02 | 70 ± 1 | 0.598 ± 0.006 | 6.50 ± 0.02 | | | | 1.606 | 3.46 ± 0.01 | 1.33 ± 0.02 | 74 ± 1 | 0.615 ± 0.007 | 6.52 ± 0.02 | | | | 1.591 | 3.44 ± 0.01 | 1.36 ± 0.02 | 74±1 | 0.606 ± 0.007 | 6.54 ± 0.02 | | | | 1.598 | 3.50 ± 0.01 | 1.45 ± 0.08 | 81±5 | 0.585 ± 0.023 | 6.62 ± 0.07 | | | | 1.577 | 3.74 ± 0.01 | 1.61 ± 0.02 | 95 ± 1 | 0.568 ± 0.006 | 6.78 ± 0.02 | | | | 1.571 | 3.86 ± 0.01 | 1.69 ± 0.01 | 102±1 | 0.563 ± 0.003 | 6.86 ± 0.01 | | | | 1.606 | 4.08 ± 0.01 | 1.73 ± 0.04 | 113±3 | 0.576 ± 0.011 | 6.92 ± 0.04 | | | | 1.580 | 4.07 ± 0.01 | 1.77 ± 0.02 | 114±1 | 0.566 ± 0.005 | 6.95 ± 0.02 | | | | 1.571 | 4.27 ± 0.03 | 1.97 ± 0.09 | 132±6 | 0.539 ± 0.021 | 7.14 ± 0.08 | | | | 1.571 | 4.52 ± 0.01 | 2.07 ± 0.02 | 148±1 | 0.542 ± 0.003 | 7.26 ± 0.01 | | | | 1.586 | 4.66 ± 0.01 | 2.10 ± 0.02 | 156±1 | 0.549 ± 0.004 | 7.31 ± 0.02 | | | | 1.596 | 4.71 ± 0.01 | 2.15 ± 0.04 | 161±3 | 0.544 ± 0.008 | 7.35 ± 0.03 | | | * | 1.574 | 4.88 ± 0.01 | 2.36 ± 0.03 | 182±2 | 0.516 ± 0.006 | 7.56 ± 0.03 | | | | 1.610 | 5.34 ± 0.02 | 2.55 ± 0.03 | 220 ± 2 | 0.522 ± 0.005 | 7.80 ± 0.03 | | | | 1.580 | 5.21 ± 0.01 | 2.62 ± 0.02 | 216 ± 2 | 0.497 ± 0.004 | 7.83 ± 0.02 | | | | 1.588 | 5.72 ± 0.03 | 2.95 ± 0.07 | 268 ± 7 | 0.484 ± 0.013 | 8.20 ± 0.06 | | | | 1.571 | 5.69 ± 0.02 | 3.06 ± 0.05 | 274 ± 5 | 0.461 ± 0.009 | 8.29 ± 0.05 | | | | 1.571 | 6.13 ± 0.03 | 3.22 ± 0.03 | 311 ± 3 | 0.476 ± 0.005 | 8.48 ± 0.03 | | | | 1.584 | 6.44 ± 0.05 | 3.44 ± 0.08 | 352±9 | 0.465 ± 0.014 | 8.74 ± 0.08 | | | | 1.598 | 6.80 ± 0.02 | 3.64 ± 0.04 | 395 ± 4 | 0.466 ± 0.006 | 8.97 ± 0.04 | | | | 1.582 | 6.72 ± 0.02 | 3.69 ± 0.07 | 392±7 | 0.451 ± 0.010 | 9.00 ± 0.06 | | | | 1.580 | 6.78 ± 0.03 | 3.77 ± 0.08 | 404 ± 9 | 0.444 ± 0.013 | 9.08 ± 0.08 | | | | 1.586 | 7.13 ± 0.03 | 4.05 ± 0.06 | 458 ± 7 | 0.432 ± 0.008 | 9.39 ± 0.05 | | | | 1.588 | 7.55 ± 0.02 | 4.40 ± 0.06 | 527±7 | 0.417 ± 0.008 | 9.77 ± 0.06 | | | | 1.588 | 7.96 ± 0.03 | 4.58 ± 0.06 | 579 ± 8 | 0.425 ± 0.009 | 10.00 ± 0.06 | | | | 1.598 | 8.06±0.06 | 4.74 ± 0.13 | 611 ± 17 | 0.411 ± 0.017 | 10.17 ± 0.12 | | | 2 | 1.580 | 8.24±0.04 | 4.74±0.11 | 617 ± 14 | 0.425 ± 0.014 | 10.18 ± 0.10 | | | | 1.584 | 8.26 ± 0.03 | 4.84±0.10 | 633±13 | 0.415 ± 0.012 | 10.28 ± 0.09 | | velocity and the excellent agreement between the measured sound speed¹⁹ and the intercept of the lower line with the U_s axis. The line segments were determined by a least-squares fit of the U_s-U_p data; in the region $2.40 \le U_s \le 3.50$ km/sec the relationship is $$U_s = 1.18 \pm 0.22 + (1.67 \pm 0.14) U_p,$$ (9) and from $3.50 \le U_{\bullet} \le 8.20 \text{ km/sec}$, $$U_s = 1.11 \pm 0.07 + (1.35 \pm 0.02) U_p.$$ (10) In the particle velocity interval of 1.39 to 1.84 km/sec, the shock velocity is essentially constant. The data of Walsh and Rice⁸ agree with the present data but those of Cook and Rogers⁹ do not. The abrupt change in the slope and the offset of the two line segments indicates a transition occurring at about 62 kbar (U_s =3.50 km/sec, U_p =1.40 km/sec, and ρ_0 =1.263 g/cc) with a new phase formed at about 80 kbar $(U_s=3.50 \text{ km/sec}, U_p=1.80 \text{ km/sec}, \rho_0=1.263 \text{ g/cc})$. The intercept of the lower line segment with the U_s axis (1.18 km/sec) is very close to the measured sound speed of 1.16 km/sec, indicating that carbon disulfide is in the liquid state from 1 bar-62 kbar. The $P-V/V_0$ plot of Fig. 7 is characterized by concave upward curves above 80 kbar and below 62 kbar with a well-defined cusp representing the transition at 62 kbar. A straight line segment joins the two major curves. Using the lower curve as a reference, the decrease in relative volume ascribed to the transition is nearly 17%. Every point on the $P-V/V_0$ curves can be reached by the Rayleigh line in a single shock originating from the P_0 , V_0 point. As a result there is no double shock wave structure associated with the transition even though an interval of constant shock velocity was observed in the $U_{\bullet}-U_{p}$ plot. This was confirmed by experiment (see Sec. II). The